Novel Materials for Renewable Energy

Hongjie Dai

Department of Chemistry, Stanford University

Clean Energy for a Sustainable Future

Hydrogen fuels

Harvest solar, wind, hydro energies for

- Electricity
- Batteries for energy storage
- Make H_2 fuel, ...

Electrocatalysts and Novel Batteries

H. Wang et. al., **Chem. Rev.,** 2013

Y. Liang et. al., **JACS** (perspective), 2013

M. Lin et. al., Nature, 2015

- Low cost, active and stable electrocatalysts.
- Water to H₂ with high efficiency/low voltage.
- Develop new battery concepts.

Growth of Materials on NanoCarbon for Energy Storage and Electrocatalysis

- High activity and fast speed.
- Durable.
- Low cost; non-precious metal based

(H. Wang et. al., **Chem. Rev.,** 2013)

[Y. Liang et. al., JACS (perspective), 2013]

Nucleation and Growth of Inorganic Materials on Oxidized Nano-Carbon

nucleation/growth on oxygen functional groups on nano-carbon

Growth of Oxides, Hydroxides, Phosphates, Sulfides... on Graphene & Nanotubes

Electrocatalysts for High Efficiency Electrolysis

HER:
$$4H^++4e \rightleftharpoons 2H_2$$

OER: $2H_2O \rightleftharpoons O_2+4H^++4e^-$

A theoretical voltage of 1.23 V

Multi-proton/electron transfer (Large overpotential)

The best catalysts (~1.5-1.6 V) (*Pt* for HER / *IrO*₂ for OER)

Industrial catalyst (> 1.8-2.0 V) (*Ni* for HER / *Stainless steel* for OER)

Need cheap and scalable electro-catalysts with high activity and durability

MoS₂ Grown on Graphene Oxide for Hydrogen Evolution Electrocatalyst (HER) in Acids

FeS₂ Doped with Co Grown on CNTs for HER in Acids

- Growth on CNT is critical
- FeS₂ affords suitable adsorption energy for H_.
- Co doping lower the kinetic energy barrier by promoting H-H bond formation on two adjacently adsorbed H_{ads}.

(D. Y. Wang, et al, C. J. Chen, B. J. Hwang, H. Dai, JACS, 2015)

NiFe Layered Double Hydroxide (LDH) for OER in Base

OER: $4OH^{-} \rightleftharpoons 2H_2O+O_2+4e^{-}$

Charge-balancing anion

• NiFe LDH grown on carbon nanotubes

Gong, M. et al, J. Am. Chem. Soc., 2013, 135, 8452-8455

NiFe-LDH Grown on CNTs: More Active and Durable Than Ir

Tafel slope of *31 mV/decade* in 1 M KOH

Gong, M. et al, J. Am. Chem. Soc., 2013, 135, 8452-8455

WATER SPLITTING

Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts

Jingshan Luo,^{1,2} Jeong-Hyeok Im,^{1,3} Matthew T. Mayer,¹ Marcel Schreier,¹ Mohammad Khaja Nazeeruddin,¹ Nam-Gyu Park,³ S. David Tilley,¹ Hong Jin Fan,² Michael Grätzel^{1*}

Although sunlight-driven water splitting is a promising route to sustainable hydrogen fuel production, widespread implementation is hampered by the expense of the necessary photovoltaic and photoelectrochemical apparatus. Here, we describe a highly efficient and low-cost water-splitting cell combining a state-of-the-art solution-processed perovskite tandem solar cell and a bifunctional Earth-abundant catalyst. <u>The catalyst electrode, a NiFe layered double hydroxide, exhibits high activity toward both the oxygen and hydrogen evolution</u> reactions in alkaline electrolyte. The combination of the two yields a water-splitting photocurrent density of around 10 milliamperes per square centimeter, corresponding to a solar-to-hydrogen efficiency of 12.3%. Currently, the perovskite instability limits the cell lifetime.

Gratzel group:

- NiFe LDH is both OER and HER active.
- Can be used for solar driven electrolysis efficiently with perovskite solar cells

¹Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland. ²Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University (NTU), 637371 Singapore. ³School of Chemical Engineering and Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 440-746, Korea.

*Corresponding author. E-mail: michael.graetzel@epfl.ch

Fig. 1. Performance of perovskite solar cell. (A) Current density–potential curve (J-V) of the perovskite solar cell under dark and simulated AM 1.5G 100 mW cm⁻² illumination. **(B)** IPCE spectrum of the perovskite solar cell and the integrated photocurrent with the AM 1.5G solar spectrum.

rently 17.9% certified) in less than 5 years makes it highly promising for large-scale commerciali-

zation (11). Long-term stability, however, is currently a challenge with these solar cells.

The conversion of solar energy directly into fuels is a promising solution to the challenge of intermittency in renewable energy sources, ad-

dressing the issues of effective storage and transport. In nature, plants harvest solar energy and convert it into chemical fuel via photosynthesis.

Inspired by nature, artificial photosynthesis has

been proposed as a viable way to store the solar

energy as fuel (12, 13). Hydrogen, which is the simplest form of energy carrier, can be generated

renewably with solar energy through photoelectro-

chemical water splitting or by photovoltaic (PV)-

driven electrolysis. Intensive research has been

conducted in the past several decades to develop

efficient photoelectrodes, catalysts, and device ar-

chitectures for solar hydrogen generation (14-20).

However, it still remains a great challenge to de-

velop solar water-splitting systems that are both

low-cost and efficient enough to generate fuel at

HER: $2H_2O \rightleftharpoons 2OH^2 + H_2 + 2e^2$

- HER is important to
 Alkaline water
 electrolysis
 - Chloralkali catalysis
- Nickel (Ni) has been widely used
- Lower activity than Pt

Ni@NiO Grown on CNT for HER in Base

- Ni-NiO interfaces are highly active for HER
- Onset over-potential ~ 0 volt

Gong, M. et al. Nature Comm., 2014, 5, 4695

Ni-NiO HER + NiFe LDH OER: ~ 1.5 V Water Splitting

Compared to 2V:

~ 25% energy saving

Thermodynamic limit = 1.23 V

Ming Gong, et al., **Nature Comm**.

With Dr. Wu Zhou S. Pennycook, Oakridge

Latest: A Highly Stable Ni-NiO-Cr₂O₃ HER Catalyst

(Ming Gong, et al., Angew Chemie, 2015; with ITRI + Prof. BJH)

Ni-NiO-Cr₂O₃ HER Catalyst: Active and Stable

Why is Ni-NiO-Cr₂O₃ Stable for HER

with CrO_x

Stable, Active Water Splitting Driven by GaAs Solar Cells

Desk Lamp Driven Electrolysis

Split water using night light

Ultrathin <u>Ni Metal Film</u> Protection for Si Photoanode

Cobalt Oxide–Graphene Hybrid Materials for Oxygen Reduction Reaction (ORR)

Y. Liang et al., Nature Mater. 2011, 10, 780.

CoO/Oxidized-Nanotube Electrocatalyst for ORR

(Y. Liang, Y. Li, H. Wang, et al., J. Am. Chem. Soc. 2012)

- Metal-oxide/Nanotube hybrid outperform metal-oxide/graphene
- Higher electrical conductivity of oxidized multi-walled nanotubes

Battery Research Ultrafast NiFe Alkaline Battery

• Making the Ni-Fe Edison battery much faster

Ultrafast Ni-Fe Battery

Anode

Cathode

Ultra-Fast Ni-Fe Battery

Los Angeles Times

Stanford researchers update safer, cheaper Edison battery

Towards recharging a car in minutes

SCIENCE

To demonstrate the reliability of the Edison nickel-iron battery, a battery-powered Bailey was entered in a 1,000-mile endurance run in 1910. (National Park Service / June 26, 2012)

Lithium Ion Battery Materials Grown on Graphene

- Cathode Material

- Anode Material

• High rate, high capacity

LiMn_{0.75}Fe_{0.25}PO₄ /GO as a Fast, High-Voltage, Stable Cathode Material for Li Ion Battery

Mn₃O₄/Graphene Anode

Wang*, Cui* et al., J. Am. Chem. Soc. 2010, 132, 13978.

Electrocatalysts for Rechargeable Zn Air Batteries

Anode:
$$Zn + 4OH^- \rightleftharpoons Zn(OH)_4^{2-} + 2e^-$$

Cathode: $O_2 + 2H_2O + 4e^- \rightleftarrows 4OH^-$ (ORR/OER)

ORR: oxygen reduction reaction OER: oxygen evolution reaction

Need more active and stable electrocatalysts for ORR & OER to increase energy efficiency

Electrocatalysts for Zn-Air Oxygen Electrodes

(Y. Liang, Nature Mater. 2011, JACS, 2012)

(M. Gong, **JACS**, 2013)

Primary Zn-Air Battery

- High discharge peak power density ~265 mW/cm²
- Current density $\sim 200 \text{ mA/cm}^2$ at 1 V
- Energy density > 700 Wh/kg.

Y Li et al., Nature Comm., 2013

High Performance Rechargeable Zn-Air Battery

- Low charge-discharge voltage polarization of ~ 0.70 V at 20 mA/cm²
- High reversibility and stability over long charge and discharge cycles (10 h discharge time)

Y Li et al., Nature Comm., 2013

35

Aluminum + Graphite + Salts = Al Ion Battery

Abundant anions in ionic liquid solution: AlCl₄ & Al₂Cl₇

Mengchang Lin, Ming Gong, Yingpeng Wu, Bingan Lu, et. al., **Nature**, 2015 Collaboration with ITRI Taiwan & Prof. B. J. Hwang.

Al Redox + Graphite/Anion Redox Reactions

 $4Al_2Cl_7 + 3e^- \rightleftharpoons Al + 7AlCl_4 - C_n + AlCl_4 \rightleftharpoons C_n [AlCl_4] + e^-$

V ~ 2.0 volt

Al Ion Battery with Graphite Paper Cathode

Fast Charging of Al Ion Battery with Graphite Foam Cathode

Al Anion/Graphite Paper Intercalation

AlCl_x⁻ Intercalation During Charging/Oxidation of Graphite

Potential of Al Battery

Applications:

- Grid storage
- Home use
- Mechanical tools

- Low cost:
- Uses earth abundant Al and C.
- Ionic liquid: 20\$/kg at large scale quoted by a chemical company.
- Safe, non flammable
- Fast charging
- Long cycle life, > 10,000
- Energy density up to ~ 62.5 wh/kg with active materials, higher than supercapacitors;
- Pb acid replacement

Clean Energy for a Sustainable Future

Convert wind- and solar-energy into:

- H₂ and methane fuels
- Energy stored in low cost, safe, high performance batteries

Acknowledgement

Nano-Bio:

Guosong Hong, Kevin Welsher, Sarah Sherlock, Joshua Robinson, Shuo Diao, Alexander Antaris, Omar K. Yaghi

Nadine Wong Shi Kam, Zhuang Liu, Giuseppe Prencipe, Andrew Goodwin

Yuichiro Kato, Sasa Zaric, Zhuo Chen.

Professor Zhen Cheng Professor John Cooke Dr. Jeffrey Blackburn Professor Calvin Kuo

Energy:

Ming Gong, Michael Angell Mengchang Lin, Bingan Lu Yingpeng Wu, Di-yan Wang Mike Kenney, Sebastian Schneider Hailiang Wang Yongye Liang, Yanguang Li Tyler Medford, Wesley Chang

Professor B. J. Hwang, C. J. Chen Professor Stephen Pennycook, Wu Zhou Professor Wei Fei

ŚAMŚUNG

Stanford

GCEP

and PIE